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Multiple Linear Regression Model

Data set : {y , x1, x2, . . . , xp}

y : dependent variable

x1, x2, . . . , xp : independent variables / regressors

Multiple linear regression model : yi = β0 + β1xi1 + β2xi2 + . . .+ βpxip + εi

β0, β1, . . . , βp : regression coefficients (unknown)

ε : i.i.d. random error with E(ε) = 0 and V (ε) = σ2
ε

Ordinary least square estimation (OLSE) : minimize residual sum of

squares
n∑

i=1

ε2
i =

n∑
i=1

(yi − β0 − β1xi1 − β2xi2 − . . .− βpxip)2 w.r.t.

β0, β1, . . . , βp.

β̂0, β̂1, . . . , β̂p : OLS estimators



Goodness of Fit in Multiple Linear Regression Model

Fitted y : ŷi = β̂0 + β̂1xi1 + β̂2xi2 + . . .+ β̂pxip

Coefficient of determination (R2) : measures how well observed data are
replicated by the model.

R2 =
sum of squares due to regression (SSR)

total sum of squares (TSS)

TSS =
n∑

i=1

(yi − ȳ)2 =
n∑

i=1

(yi − ŷi )
2 +

n∑
i=1

(ŷi − ȳ)2 = SSE + SSR

ȳ =
1

n

n∑
i=1

yi

SSE and SSR are independently distributed and mutually orthogonal
components.



Non-parametric Regression Model

Data set : {y , x1, x2, . . . , xp}

y : dependent variable

x1, x2, . . . , xp : independent variables / regressors

Non-parametric regression model : yi = m(xi1, xi2, . . . , xip) + εi

m(.) : regression function (unknown)

ε : i.i.d. random error with E(ε) = 0 and V (ε) = σ2
ε

Kernel based estimators :

Nadarya-Watson estimator (see Nadarya (1964), Watson (1964))

Pristley-Chao estimator (see Pristley and Chao (1970))



Non-parametric Measurement Error Model

xi = (xi1, xi2, . . . , xip)′

true but unobserved

x∗i =xi+ηi−−−−−−→ x∗i = (x?i1, x
?
i2, . . . , x

?
ip)′

observed

η : measurement error or error-in-variables, the difference between the
true and observed values of a variable

η : (p × 1) i.i.d. random vectors with E(ηi ) = 0 and E(ηiη
′
j) = 0 ∀i 6= j

Non-parametric measurement error model : yi = m(x?i1, x
?
i2, . . . , x

?
ip) + εi

m(.) : regression function (unknown)

ε : i.i.d. random error with E(ε) = 0 and V (ε) = σ2
ε

ε is uncorrelated with every component of η.

Kernel based estimators :

Nadarya-Watson estimator (see Nadarya (1964), Watson (1964))

Pristley-Chao estimator (see Pristley and Chao (1970))



Goodness of Fit in Measurement Error Model

R2 statistic is based on the partitioning of TSS into two orthogonal
components, viz., SSR and SSE

in case of measurement error models, such partitioning of sum of squares
is not possible

the traditional R2 cannot be used as goodness of fit statistic



Why Non-parametric Measurement Error Model?

Cheng, Shalabh and Garg (2014, 2016) proposed a measure to judge the
goodness of fit statistic in the multiple measurement error model but their
measures are dependent on the choice of the additional information :

covariance matrix of measurement errors associated with the regressors is
known, or

reliability matrix associated with the regressors is known

→ Such information may not always be available in practice

non-parametric procedures are free from such limitations



Proposed Goodness of Fit in Non-parametric Measurement Error Model

For a fixed x,

R2
n (x) =

m̂2
n(x)

σ̂2
ε,n + m̂2

n(x)

m̂n(x) : consistent estimator of m(x)

σ̂2
ε,n =

1

n − 1

n∑
i=1

(yi − m̂n(x?i ))
2

: consistent estimator of σ2
ε .

ρ2(x) =
m2(x)

σ2
ε + m2(x)

: the population counterpart of R2
n (x) for a fixed x



Kernel based estimators

Nadarya-Watson estimator : m̂NW
n (x) =

n∑
i=1

yiK

(
x− x∗i
hn

)
n∑

i=1

K

(
x− x∗i
hn

)

Pristley-Chao estimator : m̂PC
n (x) =

n∑
i=1

yiK

(
x− x∗i
hn

)
nhp

n

K(.) is the multivariate kernel function, and {hn} is a sequence of bandwidth

parameters.



Assumptions

(A1) K is centrally symmetric about zero satisfying

∫
uK(u)du = 0 and∫

u′uK(u)du <∞.

(A2) fη , probability density function of η, is bounded and twice
differentiable. Moreover, each derivative is bounded function.

(A3) Each component of xi , xij ∈ [a, b], j = 1, 2, . . . , p, are fixed, where
a ∈ R and b ∈ R.

(A4) The sequence of bandwidth {hn} is such that hn → 0, nhp−4
n →∞

and lim
n→∞

nhp+4
n = λ2 with 0 ≤ λ <∞ as n→∞.

(A5) m(.) is thrice continuously differentiable function.



Main Results

Theorem 3.1 Under (A1)–(A5), for a fixed x,√
nhp

n

(
RNW ,2
n (x)− ρ2(x)

)
d−→ σ2

εZ1(x)

(σ2
ε + m2(x))2

,

where Z1(x) is a random variable associated with normal distribution with

mean =
2λm(x)b(x)∫

[a,b]p
fη(x− y)dy

and variance =
4σ2

εm
2(x)

∫
K(u)2du∫

[a,b]p
fη(x− y)dy

. Here,

b(x) =
1

2

∫ ∫
[a,b]p

u′∇2m(x)ufη(x− y)K(u)dudy +∫ ∫
[a,b]p

u′∇m(x)′∇fη(x− y)uK(u)dudy, where a ∈ R and b ∈ R.



Main Results

Theorem 3.2 Under (A1)–(A5), for a fixed x,√
nhp

n

(
RPC ,2
n (x)− ρ2(x)

)
d−→ σ2

εZ2(x)(
σ2
ε +

(
m(x)

∫
[a,b]p

fη(x− y)dy

)2)2 ,

where Z2(x) is a random variable associated with normal distribution with

mean = 2λm(x)b(x)

∫
[a,b]p

fη(x− y)dy and variance

= 4σ2
εm

2(x)

∫
K(u)2du

[∫
[a,b]p

fη(x− y)dy

]2

. Here,

b(x) =
1

2

∫ ∫
[a,b]p

u′∇2m(x)ufη(x− y)K(u)dudy +∫ ∫
[a,b]p

u′∇m(x)′∇fη(x− y)uK(u)dudy, where a ∈ R and b ∈ R.



Finite Sample Study

Monte Carlo simulation experiments with k = 1000 replications

exact values of R2
n (x)

empirical absolute bias = EAB
(
R2
n (x)

)
:= 1

k

k∑
i=1

∣∣R2
n,i (x)− ρ2(x)

∣∣
empirical mean squared error = EMSE

(
R2
n (x)

)
:= 1

k

k∑
i=1

(
R2
n,i (x)− ρ2(x)

)2



Finite Sample Study

In the numerical study,

Five regressors, namely, x1, x2, x3, x4 and x5 are considered, which are
fixed values in [0, 1]

η is uniformly distributed on [−1, 1]5

ε
i.i.d∼ N(0, σ2

ε)

Investigating the performances of RNW ,2
n (x) and RPC ,2

n (x) of the model without
and with intercept term for

Example 1: m(x) =
5∑

i=1

x2
i

Example 2: m(x) =
5∑

i=1

sin xi



Finite Sample Study

x = (1.41, 0.92, 1.22, 1.21, 1.01)′

n σ2
ε RNW ,2

n (x) EAB
(
RNW ,2
n (x)

)
EMSE

(
RNW ,2
n (x)

)
RPC,2
n (x) EAB

(
RPC,2
n (x)

)
EMSE

(
RPC,2
n (x)

)

50

0.1 0.99 0.004 0.00002 0.92 0.08 0.007
0.5 0.98 0.02 0.0004 0.9 0.09 0.01
1 0.97 0.04 0.002 0.88 0.1 0.01

50 0.8 0.6 0.5 0.6 0.4 0.2
100 0.67 0.8 0.7 0.56 0.5 0.3

100

0.1 0.99 0.002 0.00001 0.97 0.03 0.00008
0.5 0.99 0.01 0.0003 0.96 0.03 0.0009
1 0.98 0.03 0.001 0.94 0.05 0.001

50 0.9 0.6 0.4 0.7 0.32 0.07
100 0.87 0.8 0.6 0.6 0.34 0.09

x = (1, 1.41, 0.92, 1.22, 1.21, 1.01)′

σ2
ε RNW ,2

n (x) EAB
(
RNW ,2
n (x)

)
EMSE

(
RNW ,2
n (x)

)
RPC,2
n (x) EAB

(
RPC,2
n (x)

)
EMSE

(
RPC,2
n (x)

)

50

0.1 0.99 0.002 0.000005 0.7 0.3 0.08
0.5 0.97 0.008 0.00007 0.7 0.3 0.08
1 0.96 0.02 0.0003 0.67 0.36 0.09

50 0.83 0.5 0.2 0.45 0.37 0.1
100 0.7 0.6 0.4 0.43 0.4 0.12

100

0.1 0.99 0.001 0.000003 0.72 0.27 0.07
0.5 0.97 0.007 0.00006 0.71 0.28 0.07
1 0.95 0.01 0.0002 0.7 0.32 0.08

50 0.83 0.44 0.2 0.5 0.35 0.09
100 0.69 0.6 0.37 0.45 0.37 0.1

Table: The values, absolute bias and mean squared errors for Example 1 with different values of σ2
ε based on

n = 50 and 100



Finite Sample Study

x = (1.41, 0.92, 1.22, 1.21, 1.01)′

n σ2
ε RNW ,2

n (x) EAB
(
RNW ,2
n (x)

)
EMSE

(
RNW ,2
n (x)

)
RPC,2
n (x) EAB

(
RPC,2
n (x)

)
EMSE

(
RPC,2
n (x)

)

50

0.1 0.99 0.007 0.00005 0.9 0.08 0.008
0.5 0.97 0.03 0.001 0.88 0.09 0.01
1 0.95 0.07 0.005 0.85 0.09 0.02

50 0.76 0.7 0.6 0.6 0.4 0.3
100 0.72 0.9 0.75 0.57 0.49 0.32

100

0.1 0.99 0.006 0.00004 0.93 0.05 0.003
0.5 0.98 0.02 0.0008 0.92 0.06 0.003
1 0.97 0.04 0.001 0.9 0.08 0.003

50 0.82 0.65 0.46 0.63 0.39 0.19
100 0.78 0.8 0.65 0.6 0.45 0.27

x = (1, 1.41, 0.92, 1.22, 1.21, 1.01)′

σ2
ε RNW ,2

n (x) EAB
(
RNW ,2
n (x)

)
EMSE

(
RNW ,2
n (x)

)
RPC,2
n (x) EAB

(
RPC,2
n (x)

)
EMSE

(
RPC,2
n (x)

)

50

0.1 0.97 0.004 0.00003 0.64 0.35 0.1
0.5 0.94 0.02 0.0006 0.62 0.36 0.12
1 0.93 0.05 0.002 0.6 0.4 0.13

50 0.8 0.7 0.5 0.43 0.4 0.14
100 0.65 0.8 0.7 0.42 0.45 0.18

100

0.1 0.98 0.003 0.00001 0.67 0.32 0.08
0.5 0.95 0.015 0.0002 0.65 0.35 0.09
1 0.94 0.04 0.002 0.61 0.38 0.11

50 0.81 0.69 0.48 0.46 0.39 0.13
100 0.7 0.75 0.68 0.44 0.4 0.15

Table: The values, absolute bias and mean squared errors for Example 2 with different values of σ2
ε based on

n = 50 and 100



Without Intercept Model

EAB
(
R2
n (x)

)
↓ and EMSE

(
R2
n (x)

)
↓ as n ↑

when σ2
ε ↑, RNW ,2

n (x) ↓ and RPC ,2
n (x) ↓

for large values of σ2
ε , EAB(RNW ,2

n (x)) > EAB(RPC ,2
n (x)) and

EMSE(RNW ,2
n (x)) > EMSE(RPC ,2

n (x))

for small values of σ2
ε , EAB(RNW ,2

n (x)) < EAB(RPC ,2
n (x)) and

EMSE(RNW ,2
n (x)) < EMSE(RPC ,2

n (x))

Hence, if some prior information about the value of σ2
ε is known, one can then

decide which estimator will be used to estimate ρ2(x).



With Intercept Model

in both the cases, the EAB and the EMSE of RNW ,2
n (x) do not differ

much.

when σ2
ε is small, the EAB and the EMSE of RPC ,2

n (x) for the model with
intercept are higher than that of the model without intercept.

For both the model, RNW ,2
n (x) performs satisfactorily, but for the model with

intercept term and for the small values of σ2
ε , the use of RPC ,2

n (x) as goodness

of fit statistic may not be advisable.



If Number of Regressors Increases

three more variables are added to the earlier data set, i.e., p = 8.

we compute the EAB and the EMSE of RNW ,2
n (x) and RPC ,2

n (x).

the values of RNW ,2
n (x) decrease slightly with the increase in the number

of explanatory variables in the model but the values of RPC ,2
n (x) for p = 8

are lower than that of for p = 5.

Therefore from this study, it is not readily evident in case of non-parametric

measurement error model that the value of goodness of fit statistic always

increases with the increase in the number of explanatory variables.



x = (1.41, 0.92, 1.22, 1.21, 1.01, 2.09, 0.73, 0.82)′

n σ2
ε RNW ,2

n (x) EAB
(
RNW ,2
n (x)

)
EMSE

(
RNW ,2
n (x)

)
RPC,2
n (x) EAB

(
RPC,2
n (x)

)
EMSE

(
RPC,2
n (x)

)

50

0.1 0.95 0.0008 0.000007 0.68 0.37 0.09
0.5 0.94 0.004 0.0001 0.65 0.38 0.1
1 0.93 0.007 0.0005 0.64 0.4 0.12

50 0.77 0.6 0.4 0.42 0.4 0.14
100 0.75 0.8 0.4 0.34 0.43 0.15

100

0.1 0.97 0.0006 0.000005 0.68 0.35 0.07
0.5 0.95 0.0009 0.00008 0.67 0.36 0.09
1 0.94 0.006 0.0005 0.65 0.37 0.1

50 0.8 0.5 0.32 0.45 0.37 0.12
100 0.76 0.5 0.34 0.34 0.4 0.13

Table: The values, empirical absolute bias and empirical mean squared errors of RNW ,2
n (x) and RPC,2

n (x) for

Example 1 with different values of σ2
ε when sample size = 50 and 100

x = (1.41, 0.92, 1.22, 1.21, 1.01, 2.09, 0.73, 0.82)′

n σ2
ε RNW ,2

n (x) EAB
(
RNW ,2
n (x)

)
EMSE

(
RNW ,2
n (x)

)
RPC,2
n (x) EAB

(
RPC,2
n (x)

)
EMSE

(
RPC,2
n (x)

)

50

0.1 0.96 0.0007 0.000009 0.7 0.35 0.06
0.5 0.94 0.005 0.0003 0.68 0.37 0.09
1 0.91 0.009 0.0007 0.66 0.4 0.11

50 0.76 0.7 0.6 0.45 0.42 0.13
100 0.7 0.9 0.8 0.4 0.43 0.15

100

0.1 0.95 0.0006 0.000007 0.72 0.3 0.05
0.5 0.93 0.002 0.0001 0.7 0.34 0.06
1 0.92 0.006 0.0006 0.69 0.37 0.09

50 0.78 0.5 0.36 0.5 0.39 0.11
100 0.75 0.7 0.37 0.42 0.41 0.13

Table: The values, empirical absolute bias and empirical mean squared errors of RNW ,2
n (x) and RPC,2

n (x) for

Example 2 with different values of σ2
ε for the sample sizes 50 and 100



Real Data Analysis

Data set : The Pig data

Collected by : the Statistical Laboratory of Iowa State University under
contract to the Statistical Reporting Service, U.S. Department of
Agriculture

Previously investigated by : Battese, Fuller and Hickman (1976) and
Fuller (1987)

Two variables :

Y : the number of sows farrowing
X : the number of breeding hogs on hand

n = 184



Real Data Analysis : The Pig Data

Fuller (1987) considered the linear regression model under parametric set-up

in the presence of measurement errors in the data, R2 = 0.36

we model this data by non-parametric measurement error model

x RNW ,2
n (x) RPC ,2

n (x)

-11.29 0.95 0.98
1.31 0.73 0.99

10.04 0.96 0.99
51.74 0.91 1
98.29 0.92 1

162.26 0.72 0.98

Table: The values of RNW ,2
n (x) and RPC ,2

n (x) for the data



Limitation 1

The proposed measure is not location invariant. If the dependent variable
is shifted by a constant, the estimated function m changes its value
substantially, while the errors stay the same, and thus the proposed
measure can change from a very small value to a very large one without
any change in the predictive capability of the model.

Suggestion : Presence of intercept term in multiple linear regression model leads
to the location invariant R2 due to correction around the mean.
However if β0 = 0 the model reduces to no-intercept model and
there R2 is not location invariant. Non-parametric multiple
regression model does not have any generic intercept term, which
may lead to the fact that the proposed estimator is not location
invariant.



Limitation 2

Regression goodness of fit typically compares variability of signal to
variability of noise. At a single point, the signal consists of a single point,
the conditional mean, which is unknown to us and it looks like I cannot
thus judge its strength. For example, imagine a linear regression of y on x
going through the origin. At x = 0, the predicted value is 0, which
implies the proposed measure of fit is 0 even if the errors are arbitrarily
small, but that does not mean there is no good fit. To address this, the
traditional goodness of fit measures are typically global, that is they
summarize the performance on the whole support of the explanatory
variables rather than at a single point as the proposed measure does.

Suggestion : Deriving the process convergence of R2
n is equivalent to deriving the

process convergence of the Nadarya-Watson and the Priestley-Chao
estimators in the presence of the measurement errors in the
regressors. However, to the best of my knowledge, the process
convergence of the kernel based estimator of the non-parametric
regression function even without having any measurement error has
not yet been studied in the literature.
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